Profile TensorFlow using TensorBoard
This guide will show you how to use the TensorFlow Profiler to profile the execution of your TensorFlow code.
Example Code
Copy and paste the following code into tf-profile.py.
from datetime import datetime
import os
import tensorflow
from tensorflow.keras.datasets import mnist
from tensorflow import keras
from tensorflow.keras import layers
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
model = keras.Sequential([
layers.Dense(512, activation="relu"),
layers.Dense(10, activation="softmax")
])
model.compile(optimizer="rmsprop",
loss="sparse_categorical_crossentropy",
metrics=["accuracy"])
train_images = train_images.reshape((60000, 28 \* 28))
train_images = train_images.astype("float32") / 255
test_images = test_images.reshape((10000, 28 \* 28))
test_images = test_images.astype("float32") / 255
# Create a TensorBoard callback
logs = "logs/" + datetime.now().strftime("%Y%m%d-%H%M%S")
tboard_callback = tensorflow.keras.callbacks.TensorBoard(log_dir = logs,
histogram_freq = 1,
profile_batch = '10,20')
model.fit(train_images,
train_labels,
epochs=10,
batch_size=128,
callbacks = [tboard_callback])
The tensorflow.keras.callbacks.TensorBoard command will create a tensorboard callback and profile_batch will pick batch number 10 to batch number 20.
Local profiling on your own computer
Run the code:
python tf-profile.py
Compress the
logsfolder:bashtar -zcvf ./logs.tar.gz ./logs
Download the tarball file with
sftpand/orhal-ondemand.Decompress the tarball file:
tar -zxvf ./logs.tar.gz
Install the TensorBoard profile plugin in your python environment:
pip install tensorboard_plugin_profile
Launch the TensorBoard with profiler installed:
tensorboard --logdir ./logs
Open the TensorBoard dashboard in your web browser. (Google Chrome is strongly recommended.)
Remote Profiling on HAL
Coming soon!